Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(11): e0013423, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37812008

RESUMO

Different fungal species of the Pleosporaceae family infect rice, causing similar symptoms. Reference genomic sequences are useful tools to study the evolution of these species and to develop accurate molecular diagnostic tools. Here, we report the complete genome sequences of Bipolaris bicolor, Curvularia hawaiiensis, Curvularia spicifera, and Exserohilum rostratum.

2.
Virus Evol ; 9(2): vead049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649958

RESUMO

The rice yellow mottle virus (RYMV) is a model in plant virus molecular epidemiology, with the reconstruction of historical introduction routes at the scale of the African continent. However, information on patterns of viral prevalence and viral diversity over multiple years at a local scale remains scarce, in spite of potential implications for crop protection. Here, we describe a 5-year (2015-9) monitoring of RYMV prevalence in six sites from western Burkina Faso (geographic areas of Bama, Banzon, and Karfiguela). It confirmed one irrigated site as a disease hotspot and also found one rainfed lowland (RL) site with occasional high prevalence levels. Within the studied fields, a pattern of disease aggregation was evidenced at a 5-m distance, as expected for a mechanically transmitted virus. Next, we monitored RYMV genetic diversity in the irrigated disease hotspot site, revealing a high viral diversity, with the current coexistence of various distinct genetic groups at the site scale (ca. 520 ha) and also within various specific fields (25 m side). One genetic lineage, named S1bzn, is the most recently emerged group and increased in frequency over the studied period (from 20 per cent or less in 2015-6 to more than 65 per cent in 2019). Its genome results from a recombination between two other lineages (S1wa and S1ca). Finally, experimental work revealed that three rice varieties commonly cultivated in Burkina Faso were not different in terms of resistance level, and we also found no significant effect of RYMV genetic groups on symptom expression and viral load. We found, however, that infection outcome depended on the specific RYMV isolate, with two isolates from the lineage S1bzn accumulating at the highest level at early infections. Overall, this study documents a case of high viral prevalence, high viral diversity, and co-occurrence of divergent genetic lineages at a small geographic scale. A recently emerged lineage, which comprises viral isolates inducing severe symptoms and high accumulation under controlled conditions, could be recently rising through natural selection. Following up the monitoring of RYMV diversity is required to confirm this trend and further understand the factors driving the local maintenance of viral diversity.

3.
Front Plant Sci ; 13: 1022348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507371

RESUMO

In recent years, Brown spot disease of rice (BSR) has been observed on leaves and seeds of rice in all rice-growing areas of Burkina Faso. Bipolaris oryzae and Exserohilum rostratum are the main fungal species isolated from BSR infected tissues and they are frequently observed in the same field. However, we are lacking information on the genetic diversity and population structure of these fungi in Burkina Faso. The mode of reproduction is also unknown. The genetic diversity of isolates of B. oryzae (n=61) and E. rostratum (n=151), collected from major rice-growing areas of Burkina Faso, was estimated using genotyping-by-sequencing (GBS). The mean values for nucleotide diversity (π) were 1.9 x10-4 for B. oryzae and 4.8 x10-4 for E. rostratum. There is no genetic differentiation between the geographical populations of each species. The analysis of molecular variance revealed that 89% and 94% of the genetic variances were within the populations of B. oryzae and E. rostratum, respectively. For each species, four genetic clusters were identified by two clustering methods (DAPC and sNMF). The distribution of these genetic groups was independent of the geographical origin of the isolates. Evidence of recombination was detected in the populations of B. oryzae and E. rostratum. For B. oryzae balanced mating type ratios were supporting sexual reproduction. For E. rostratum overrepresentation of MAT1-2 isolates (79%) suggested a predominant asexual reproduction. This study provides important information on the biology and genetics of the two major fungi causing brown spot disease of rice in Burkina Faso.

4.
FEMS Microbiol Ecol ; 98(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35867879

RESUMO

Due to their potential applications for food safety, there is a growing interest in rice root-associated microbial communities, but some systems remain understudied. Here, we compare the assemblage of root-associated microbiota in rice sampled in 19 small farmer's fields from irrigated and rainfed lowlands in Burkina Faso, using an amplicon metabarcoding approach of the 16S rRNA gene (prokaryotes, three plant samples per field) and ITS (fungi, one sample per field). In addition to the expected structure by root compartments (root vs rhizosphere) and geographical zones, we showed that the rice production system is a major driver of microbiome structure. In irrigated systems, we found a higher diversity of prokaryotic communities from the rhizosphere and more complex co-occurrence networks, compared to rainfed lowlands, while fungal communities exhibited an opposite pattern (higher richness in rainfed lowlands). Core taxa were different between the two systems, and indicator species were identified: mostly within Bacillaceae in rainfed lowlands, and within Burkholderiaceae and Moraxellaceae in irrigated areas. Finally, a higher abundance in rainfed lowlands was found for mycorrhizal fungi (both compartments) and rhizobia (rhizosphere only). Our results highlight deep microbiome differences induced by contrasted rice production systems that should consequently be considered for microbial engineering applications.


Assuntos
Microbiota , Oryza , Burkina Faso , Fazendeiros , Fungos/genética , Humanos , Oryza/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
5.
Plant Dis ; 105(12): 3889-3899, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34142847

RESUMO

Multiple constraints affect rice yields in West Africa. Among these constraints are viral, bacterial, and fungal pathogens. We aimed to describe the spatiotemporal patterns of occurrence and incidence of multiple rice diseases in farmers' fields in contrasting rice growing systems in the western Burkina Faso. For this purpose, we selected a set of three pairs of sites, each comprising an irrigated area and a neighboring rainfed lowland, and studied them over four consecutive years. We first performed interviews with the rice farmers to better characterize the management practices at the different sites. This study revealed that the transplanting of rice and the possibility of growing rice twice a year are restricted to irrigated areas, while other practices, such as the use of registered rice cultivars, fertilization, and pesticides, are not specific but differ between the two rice growing systems. Then, we performed symptom observations at these study sites to monitor the following four diseases: yellow mottle disease, Bacterial Leaf Streak (BLS), rice leaf blast, and brown spot. The infection rates were found to be higher in irrigated areas than in rainfed lowlands, both when analyzing all observed symptoms together (any of the four diseases) and when specifically considering each of the two diseases: BLS and rice leaf blast. Brown spot was particularly prevalent in all six study sites, while yellow mottle disease was particularly structured geographically. Various diseases were frequently found together in the same field (co-occurrence) or even on the same plant (coinfection), especially in irrigated areas.


Assuntos
Oryza , Burkina Faso
6.
Phytopathology ; 111(8): 1428-1437, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33386066

RESUMO

Rice blast, caused by the filamentous ascomycete Pyricularia oryzae, is one of the most devastating diseases of rice. Four genetic clusters were previously identified, and three have a large geographic distribution. Asia is the center of diversity and the origin of most migrations to other continents, and sexual reproduction persisted only in the South China-Laos-North Thailand region, which was identified as the putative center of origin of all P. oryzae populations on rice. Despite the importance of rice blast disease, little is known about the diversity and the population structure of the pathogen in Africa (including Madagascar). The present study was intended to describe the structure of African populations of P. oryzae and identify the relationship between African and worldwide genetic clusters. A set of 2,057 strains (937 African and 1,120 Madagascan strains) were genotyped with 12 simple sequence repeat markers to assess the diversity and the population structure of P. oryzae. Four genetic clusters were identified in Africa and Madagascar. All four clusters previously identified are present in Africa. Populations from West Africa, East Africa, and Madagascar are highly differentiated. The geographic structure is consistent with limited dispersion and with some migration events between neighboring countries. The two mating types are present in Africa with a dominance of Mat1.2, but no female-fertile strain was detected, supporting the absence of sexual reproduction on this continent. This study showed an unsuspected high level of genetic diversity of P. oryzae in Africa and suggested several independent introductions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Ascomicetos/genética , Variação Genética , Magnaporthe/genética , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...